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Conversion Factors, U. S. Customary to Metric (S1)

Urits of Measurement

U. S. customary units of measurement used in this report can be converted to

metric (SI) units as follows:

e Muledply By To Obtain

fest 0.3048 metres ‘
inches 2.54 centimetres €
kips (force) per square inch 6.894757 megapascals )
knots (international) 0.5144444 metres per second

pounds (feorce) per square inch 6894.757 pascals A
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PREDICIION v:_ PAVEMENT ROUGHNESS

Introduction

For many years the emphasis in pavement research has been directed
toward the development of a mechanistic approach t. pavement design. Nearly
all such design procedures have been based on an empirical correlation between
pavement distress and computed pavement response parameters. The computed
response parameters are normally based on a deterministic evaluarion of mate-
rial properties and pavement section geometrics., These design procedures do
represent an advancement in the state of the art of pavement design in that
they provide a wmechanism for considering basic material properties and pave=
ment response. A shortcoming of these procedures is the fact the procedures
do not lead directly to a prediction of the functional performance of a
pavement. For military airfields the concept of functional requirements is
particularly importont. The importarces of functional requirements are ilju-
strated in the studies of methods for repairing nomb damage znd the minimum
pavemnent requirement for alternate pavements to be used only in emergency.
In each of these examples the conventional definition of pavement distress
becomes weaningless. The principal consideration is the effect the pavement
surface has on the operating aircraft. An example of the acceleiation forces
generated by a B-52 aiccraft operating on a hypotheticul sinusoidal profile is
shown in Fig. 1 (Horn 1977). For the hypothetical sinusoidal profile the
critical wave length for various aircrvaft speeds is shown in Fig. 2 (Horn
1977). Thus it is seen that the forces generated are dependent on both the
amplitude, frequency of rutting, and speed of the aircraft With this in mind
then the prediction of pavement roughness is seen tc involve not only the
prediction of a rut depth but also the prediction of the distribution of the

rutting.
Scope

This report presents a general methodology for predicting pavement
roughness and a specific methedology for predicting rutting in flexible
pavewents. No specific method was developed for predicting of roughness for
rigid pavements nor for the roughness caused by swell and frost heave of

pavements.




Approach

The prediction of pavement roughness iuvolves the generation ot hypo-
thetical pavements that meet known statistical parameters tor surtace profile,
thickness and material properties. For each of these pavements a wmechanistic
model is used to predict the development and distribution of rutting with
traftfic., Thus at anv time in traffic a profile for each pavement can be gen-
erated and the resulting profile analvzed as to the effect on using aircrafe
by using an aircraft simulation program, such as the one described by Horn
(1977). 1If a sufficient number of hypothetical pavements are analyzed, then a
distribution of roughness parameters can be generated such that the probability

that a certain roughness develops is predicted.

Generation of Hypothetical Pavements

The generation of a series of parametric values that meet statistical
data mav be accomplished in a number of ways. One of the sioplest is the use
of a distribution function by which a series of values will be distributed.
The values can be selected randomly from the distribution such that resulting
set will have no order but will have a specified mean and standard deviation.
The most commonly used function, the normal distribution, has some undesirable
properties, mainly that the possible values are unbounded and the data are
svmmetrically distributed. Possibly a better distribution function would be
the Beta function as described by Harr (1977). The Beta function overcomes
some of the disadvantages of the normal distribution in that it may be skewed
and has a specified minimum and maximum value. A computer program was written
(Appendix A) that.provides a set of values that are distributed according to
the Beta function and has a given mean, standard deviation, minimum value and
a maximum value.

Consider tor example the generation of 40 values haviong a mean of 6.7,
a standard deviation of 2.2, 4 minimom value of 2 and a maxioum value of 15.
The values generated by the computer program having the required statistical
properties are given in Appendix A,  The distribution of rhe values is shown
in Fig. 3. Such a distribution could very well represent the values of soil
strength in terms of California Bearing Ratio (CBR) where CBR values are bounded
and have a skewed distribution,  The parameters describing g pavement section

can also be generated wnsing the Beta distribution function.




From a statistical point the rimdomly generated values satisfy the re-

quirement of the problem.  If in the generation of the properties for a hiypo-
thetical pavement, the points tor which properties are being penerated are
sufficientlv far apart that the properties are independent of one another, then
the procedure is correct. For airticld paveuents where the critical wavelength
is rather long and properties are onlv generated tor these points, then the

roat ine mav be sutficiently correct to wse. If the shorter wavelengths are

to be considered and the properties at one peint are influenced bv the properties
of adjacent points, then additional restraints must be placed on the peneration
scheme.

Dr. Per Ullidtz developed such g routine for prediction of roughness in
highway pavements where the critical wavelengths are much shorter than in
airtield pavements. Dr. Ullidtz first tried what he called o random walk in
which the mean of o parameter distribution was set equal to the valve ot the
previous point.  This procedure resulted in unrealistically smooth pavements
and thus the scheme was modified to what Dr. Ullidtz named the modified random
walk. This scheme is different in that the mean of the parameter distribution
is a projection of the values of the previovuvslv determined two vatues. The
two schemes are illustrated in Tip. 4 (Fig. 2 of Ullidtz).

In a study ot the significant characteristics of runwav roughness, Berens
and Newman (Berens, 1973, AFFDL-TR-73-109) developed a computer program tor
generating hypothetical runwayv protiles that had a specitied power spectral
density (PSD).

also the PSD of a number of different pavements were determined aond a
typical new pavement PSD was estimated. Thus using the computer program, a
profile could be determined that would simulate a new pavement. In the simula-
tion process a methodology was developed for random spacing of the different
waves along the pavement profile. An example of the results of the simulation
process is shown in Fig. 5.

The problem of developing probabilistic information about the enginecring
parameters of a space also exists in other areas of geotechnical engineering.
Consider the paper by Wu and Wong (Wu and Wong 1981) that describes
the case history of a problem in probabilistics soil exploration. 1n this

case, the soil propertics are measured at several locations. The probabitity




contours are developed based on a proximity rule. For pavement design, it is
usually not possible to have measured paramecers since the pavement system is to
be constructed in the future. Still such a proximity rule could be used partic-
ularly if short wavelengths are important. The basic concept would be to
randomly select parameters at distances such that they can be considered
mutually independent. These values can then be considered the same as measured
values and a proximity rule used to develop parameters between the randomly

determined values.

Prediction of Pavement Rutting

General

Two basic approaches were available for prediction of the pavement
rutting - the statistical and mechanistic. Barber et al. (1978) conducted a
study of numerous pavements and developed a statistical model for prediction
of the rut depth as a function of CBR, thickness, and traffic. This particular
model provides the rut depth as a deterministic value or a statistical value.

If the rut depth is determined statistically, i.e. in terms of a mean and variance,
then the rut depth can be distributed directly. Although Barber's model cur-—
rently exists, for reasons of versitility and laboratory testing considerations

a mechanistic model for prediction of rutting was developed.

Permanent Strain Model

The mechanistic model is based on a laboratoryedetermined relationship
between the permanent deformation (ep) and the resilient deformation (ER) and
state-of-stress along a vertical axis of the pavement system. The first work
accomplished toward developing the mechanistic model was to review available
laboratory data for the development of the relationship between Ep and €R and
to show the feasibility of using the approach for predicting rut depth. This
study was rather lengthy and involved; therefore the results are presented sepa-
rately in Appendix B. Although the methodology presented in Appendix B was a
viable methodology, it did not lend itself to a computerized procedure.

From the data analyzed in Appendix B it was apparent that the relationship
between Ep and €r is influenced by the soil strength. To develop the relation-
ship with soil strength the WES data were plotted as shown in Fig. 6. For each
of the repetition levels a relationship 1s shown between the ratio of €p and ¢

R
and the resilient modulus (MR). By considering the relationship shown in Fig. 6,




the relationship that

‘b <70,000>R
= g |20

M
where

el
R = 0.4 (Stress Reps)0'1‘

=

repeated deviator stress in laboratory
triaxial test

-
[}

= measured resilient strain in laboratory
triaxial test

i

is developed.

As an independent check of the relationship, a comparison was made with
experimental data reported by Ogawa (1972). This comparison is shown in Fig. 7.
Model for Resilient Modulus

For the purpose of this study a comparison with actual test data would
be most desirable. One problem is that the strain model is based on MR where
the measured material propertv ian the field test sections is the CBR. Making
the conversion from CBR to MR is rather difficult since the MR is a function
of stress as well as material properties. This conversion was made by devel-
oping an empirical correlation between field CBR and MR' The correlation may

be expressed by the equation

where
_ 1.9661
x = 4.,5682 -~ 8.55 CBR (6.5 + cd)
vy = repeated deviator stress

The relationship is shown graphically in Fig. 8.

This correlation was developed from data obtained in connection with a
study (Parker et al. 1979) to develop a correlation between plate bearing value
and MR. For the study a number of field sites were selected based on an attempt
at having sites covering a wide range of soil types. At each site plate bearing
and CBR tests were conducted and undisturbed soil samples were taken. Resilient

modulus tests were conducted by the WES Geotechnical Laboratory. An example ef the




laburatary resilient modulus data and compiarison with the model is given in
Fig. 9. With the models now it is possible. provided the stress distribution
is known, to make predictions of permanent deformation for various prototype
puavement tests that nave been conducted at WES,

Stress Model

When considering the stress distribution in flexible pavements, the
structural lavers above the subgrade are divided into bound and unbound materials.
Bound materials are capable of substaining tensile stress and thus tend to dis-
tribute load as a slab; however, complete slab action is unlikely. Shrinkage
and load assoclated cracking reduce the load-distributing characteristics of
stabilized layers in pavement systems. In another study (the report to be
published later) it was shown from data obtained in prototype testing of air-
field pavements that bound layers give a load-distributing effect equivalent to
a two~layvered system having a modulus ratio (modulus of elasticity of the top
layer divided by the modulus of elasticity ot the bottom laver) between 3 and
4. This ratio will depend somewhat on the type material being stabilized and
the amount of stabilization. For gravels that are well stabilized the ratio !
will approach 4; whereas for clays the ratio will be closer to 3. If there is
very dense cracking in the stabilized material, the ratio could be lower but
this is not likely to occur before complete failure of the pavement system.

Unbound structural layers, both crushed and uncrushed gravels, in a pave-
ment system distributed the load equivalent to a two-layered system having a
modular ratio of 1; that is to say the stresses will be distributed according
to the Boussinesq stress model.

Since the procedure for predicting roughness reguires the computation of

stress many times, it is desirable to have a rapid means for nerforming thece

computations. For this a computer program was written using tabulated stress
factors that are a function of the r/t ratio, r/z ratio, and the modulus ratio

where r is the radius of the load area, t is the thickness of the structural

layer, and z is depth to the point for computation of stress. An example of
the stress distribution for the G-5A is given in Fig. 10.

Rutting Model

The rutting model consists of the permanent strain model and the stress

distribution model. This model is illustrated in Fig. 11. There are some




vesampt ivns tadat must be included with the use of the model.  The first assump-

tion is that a stress repetition is svononvmous with a coverave.  The second
assunption is that ne permanent strain occurs in bound lavers. For cement or
lime-scabilized material, this has been found to essentially be true as long as
the bound materials completely fail.  tor asphalt bound materials rutting can
oceur within these lavers. This is particularly true it a poor desipn is used
in the mix, This report presents no rutting model for use in predicting rutting
in the aspaalt bound materials. Fortunately most military airfields have well-
designed asphalt bound lavers that are fairly thin and thus the rutting within
these lavers will be neglivible. The third assumption is that although the
permanent strain model was developed based on testing of subgrade soils, it is
assumed to be uscable for pgranular materials. This assumption can be justified
trom the data presented in Appendix B.

The rutting model as presented in Fiy. 11 provides a deterministic
evaluation of the rut depth. 1f the model described for generation of a hypo-
thetical pavement is used {or generation of the material properties and struc-
tural laver thicknesses and a sufficient number of sectiuns are generated, then
the variations in rut depth can be simulated. 7This procedure, referred to as the
Monte Carlo procedure, can be used to determine the probability of the rut exceed-
ing a certain value or, if used in connection with an aircra’t simulation program,
the probability of the acceleration forces exceeding a certain value.

Prof. M. Harr introduced in o short course a procedure he referred to
as Rosenblueth’s procedure that could be used to compute the rut depth in sta-
tistical terms.  The procedunres uses a finite difference procedure where the
dependent value of g fanction is computed at both the mean plus a srandard

deviation and the nean minus o standard deviation of the independent variable.

1

wse two values are used te compute the mean and deviation of the dependent

variable.  The procedure 7or g single independent variable is Jor
Y = 1(X)
then Y= 1/2 (X+ + X))
; S = 2 + X
ind S 1/ (X+ \_)

v
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where

for each

where

b >
o +><N '><r-‘ +
]

et
"

Also the

computed

mean of Y
standard deviation of Y

F(X+5S)

_ X

F(X +5S)

b3

mean of X

standard deviation of X

I'he variance, Vv, of Y can be computed by

S
v = -2 (100)
Yoy

This procedure can be extended to multiple independent variables by considering

the functional value for values of the mean plus or minus a standard deviation

of the independent variables, i.e
~ 1 1
*‘1‘2(++‘()
:_1_(1
ST oK -)
. 1( )
o= 5 (2
1 2 +
> 1 2 2
1”2(X+‘X->

the mean plus a deviation for variable 1
the mean minus a deviation for variable 1
the mean plus a deviation for variable 2
the mean minus a deviation for variable 2

a mean of the function with respect to variable 1 with all other
variables at the mean

a standard deviation with respect to variable 2 with all other
variables at the mean

same as il but with respect to variable 2

same as S, but with respect to variable 2

2
value of the function at the mean of all variables is used and is

by
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: 1 2)
‘! a%x o= 1\ X ,X
i
; where
XL = the mean of variable 1
Y z .
X~ = the mean of variable 2

Now the equation

can be used to compute the mean, o, of the tunction,  For variasne. the equations

vo= 1

!

- ‘A
- S v
\' _ ;.‘;

are used to compute the variance, V, and V,_, with respect to ecach of the variables.

1 2

Now the equation

2 ) ~ 2
1-V‘=(1+\']“) (L +v )

can be used to compute the variance ot the function with respect to all variables.
The Rosenblucth procedure was conbined with the rutting model and computerized

to yive a computer program for computing the rut depth in statistical terms.

The listing of this program is given in Apnendix €. With the rut depth compu-
ted in statistical terms, the rut could be distributed directly to produce the

ronwayv profile,
Other Considerations

A methodology has been presented ftor generating o new airfield pave-
ment profile and material properties that meet given statistical data. For
flexible airticld pavements these data can be used to predict the development
o1 permanent deformation with traffic and thus construct a prediction ot the
profile with traffic. Using the profile as input in an aircratt simulation
program, a measure of roughness is obtained. The methodology developed thus tar
is rather crude but does illustrate the feasibilitv of the approach and provides
basic models necessarv for future development. As mentioned earlicr, a pressing
need is for the development of the proximity rules to be used in generating the
initial pavement sections. Verification of the proximity rules should be

accomplished by comparison with actual measured airfield data.

12




Also a factor that could be considered is the development of struc-

tural cracking. Models are currently available for both rigid and flexible
pavements for the prediction of structural cracking, but the effect of the
cracking on the roughness of a pavement is a relatively unknown quantity.

Due to the interaction of the aircraft and runway surface the loading
to the pavemeat is not necessarily equal to the stated loading of the aircrafe.
The consideration of dynamic load in the procedure would add an order of magni-
tude in the solution process. Such loadings are a function of both protile
and speed,and thus consideration of the determination of the dvnamic loading
would require continuous updating as the profile changed.

The profile could also be affected by climatic conditions, particularly
in frost areas. For pavements that are not designed for full frost protection
the frost heave is likely to be very critical. The weakening of the subgrade
during spring thaw is another factor that should be considered as the permanent
deformation that occurs during this period of time may be greater than the
deformation cccurring during the remainder of the year.

For rigid pavements the joints pose a special problem. There is some
statistical chance of dowel failures, spalling, pumping, or other joint problems
that could create a rough pavement. For rigid pavements, more so than flexible
pavements, research aimed at solving the problems of predicting pavement rough-

ness is almost nonexistent.

Summary

A simplified procedure has been developed for considering roughness in
pavement design. The procedure used the variatien in pavement section to gen-
erate a stochastie airfield pavement. A model was developed for predicting
the permanent surface deformation with aircratt traffic. Thus the predicted
deformation can be added to the initial profile to yield a pavement surface at
any point in time. The predicted pavement section can be tested for roughness
by the use of an aircraft simulation computer progpram.

Extension of this simplified procedure to provide consideration of sowme
of the other factors that affect pavement roughness would require a large
research effort. Although the research effort for complete development of the
methodology is larpe, it is a project that should be undertaken. The returo
on such an effort in terms of better pavement design and pavement management

data would justify the monies spent.
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Appendix A:  Program BETADIS
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11.527

Mean = 6.7;

.970

.810

1.965

3,787

675

.378

.327

List of Numbers Having Beta Distribution
Obtained from Program BETADIS

12.081 6.575 4,092

10.030 8.418 6.230

10.229 9.701 6.806
7.597 4.1393 5.418
8.073) 3.651 4.360
5.388 4.659 7.681
4.810 8.705

Standard Deviation = 2.2

.002

.926

.129

L947

3.889

.325
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Appendix B: Development of a
Basic Rutting Model

TNTRODUCT ICN

The Waterways Experiment Station (WES), in secking 2 more raticnal =pproach
to desigr of flexible pavements than the precently used CBR design procedure,
has developei, under sponsorship of the Federal Aviation Adminictration (FaA)

ngineers (O7E), subgrade straln criteria for Loth

1 . . L .
roads Brabston, et als ) and airports (Barker ani Brabston®). The criteris
now tein- incorporated into both FAA and CCE design procedures zre considered
to be ke tasis for limiting the rutting of flexible paverment.

he apprzach

of limiting the resilient strain in the subgrade in crder to linmit r.tiinge

Lhe denign
procedures the limiting subgrade sirain criteria were presented zs a function
2

of the subgrade modulus. The author  discussed this point in detail and
presented the results of laboratory tests which ipdicated that the relazation-
ship Letween the permanent strain and resilient straiin was indeed a function
of the stiffress of the materisl. The work in developing these strain cri-
teria and in studying the results of laboratory tests for conformation of the
eriteria ~reated an interest in the relationship between the permanent strain

anl resilie:nt strain of subgrade soils.
SUBGRADE SWRATIN CRITFRIA

A comparison of the different subgrade criteria is presented in Figure 1.
A1l of the criteria presented with the exception of that developed by Dr. Chou

[Referonse ¥) nhas been developed from pavement sections conforming to some

Bl
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rrevioisly established design standards, Although different design standardis

may huve been used and different methods were employed in characterizing the
granular msterials, it is seen when grouped that all of the criteria form a

relatively narrow band across a wide range of repetition levels. Consider

5

Lrat for repetiticn level of 1 x 107 repetitions the range of the criteria is
- T .l,-\—g . ] By "3 . . s o . - ] h
from 0,005 x 10 te 1.4 x 10 in./in. Even if the criteria of Finn, et zl,

anl Thol wers extrapclated to this level of repetition, the range would nct

From the evidence 1t wcould appear that for a given level of

resilien® strzin at which the permanent strain beccmes unaccept-
stle wouli te within a fairly narrow bani. The data presented in Figure 1
strongly indicate a unique relationship between permanent strain and resilient
strain. Considering the emphasis being placed on the use of the repeated lcad
triaxial test in which both the resilient ani permanent strains are measured,

It would seem that the concept of limiting subgrade strain criteria could be

substantiated or disputed from the results of such laboratory tests.
LABORATORY TEST

In recent years much interest has been generzated principally by the work
of Barksdaleg in the use of the repeated load triaxial test as a method tc
predict rutting of a pavement. Tue aim of nearly all of the laboratery
rutting tests performed to date has been: first, to delfine the permanent
deformaticn as a function of the applied stress; and second, to define the
rezilient modulus of the material as a function of stress. Only one experiment
known to the author has been performed with the first objective of defining
the relationship between resilient strain and permunent strain. This experiment
reported by Chisolmlo was conducted to substantizte the concept by the author

that the allowable resilient subgrade strain is a function of medulus of the

B3
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subgra ley l.e., te establish the relaticnship between resilient strain and

permanent strain for soils having different moduli., To accomplish Lhis objec-
tive, a Vicksburg heavy (buckshot) clay (CH ani E-11) wus molded at four dif-
ferent water ccentents and tested in z repeateld load triaxial test. Since the
chlect or the experiment was to determine only the relative relationships
between resilient strain and permanent strain between the samples, orly 1000
load repetitions were applied té each sample., The results of the experiment
are shown in Figure 2. Another experiment in which the establishment of the

relationships between resilient and permunent strain was only a minor part

was conducted at the University of California at Berkeley by Ogawa (Refer-

ence 11), The results of this experiment in regard to the relationship between

resilient strain and permanent strain are shown in Figure 3. The results of
these tests are close to those of WES, even though the soils are different and
the tests were conducted at different strain levels and a different number of
strain repetitions were applied. Both Chisolm and Ogawa used almest identical
equipment and procedures in conducting the two experiments. One seemingly
important factor is that both used LVDT helding clamps placed on the specimen
(a description ¢f the measuring device is given in References 10 and 11) for
measuring both resilient and permanent strains., When examining the results
s

of other researchers,the evidence indicates a distinct difference in the test

results depending on how the strains are measured.

The majority of research reports studied were written primarily to present

the permanent or the resilient deformation characteristics of « material but
not the relationship between the two. Thus, in order to develop these data,
in many cases it was necessary to calculate missing parameters wnhich, in most
cases, was the resilient strain. The duta studiel were that reported by

o) L
Barksdale,9 Kalcheff and Hicks,lL chsborg,]? feed and McNeill,l‘ Brown et al.
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Figure B2. Relationships between permanent strain and

resilient strain for buckshot clay
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Figure B3. Relationship between permanent strain and

resilient strain for different materials
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PERMANENT STRAIN €p, 1003 IN./IN,

(AT 10,000 STRAIN REPE TITIONS)

500 T T T T TT7TT] T IR N N S B 0
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Figure B4. Relationships betwean permanent s*-in and 16
resilient from data developrd by ravwan et al.
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owny concitded in o the puaper tiat stress hictory hma oon

staited.
elie

otoon the permanent strain bat ono effect conoregilient straln, “he data

Ltel in Viguve 2 indicated the relaticnship becween permanent strain

as ploid
and resilient sirain is little affected by moiertte differenczes in stress

history. In the plot, a distinct relutionship for euch overconsolidation

ratio is presented but the difference aprears inccnsistent ani could be experi-

mental error. A single relationship weuld pretably suffice for this set of .
data. The data presentel hy Barksdale (Figure 3}, Sced (Figure 5), and

Fossberg (Figure 3) are all straightforward, each of which provided useful

information. Of all the tests, those conducted by Fossberg covereld the

largest range (.0002 “o .0042 in./in.) of resilient strains. Two tests, one

by Barksdale and cne by Ogawa, indiceted very abrupt chanse in the slope of

the relationship. For the test by Barksdale the abrupt change came at a

resilient strain of .0013 in./in. and for Ogaws at .C011 in./in. A more

gradual change at atout the same magnitude of resilient strain was indicated

-

in thie results presented by Fossberg. Such behavior lends strong support to
the use of the limiting subgrade strain concept in pavement design. It can
also be pointed out that the strain criteria developed to date (presented in
Figure 1) are consistent with the luboratory results.

In examining the data plots, it was noted that results of Chisolm,
Fossberg, and Ogawa group together and the data of the other researchers fall
into another group. It has already beem emphasized that Chisolm and Ogawa
employed inside LVDT holding clamps attached to the specimen to measure both
resilient and permanent strains, Fossberg alsc used the same devices for
the tests he conducted. Barksdale found that such measuring devices gave

him inconsistent readings of permanent deformation and therefore he employed

outside measuring device:s for measuring permanent strain but still used LVDT
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cluwmre Por mensuringg resilient strains, Tt 15 believed that the cther

researchers ull use: culcod o measurin: devices which measured the defleciion
cver the entire sample, Thug, the datls fall into twe groups; that in which
the permanent sirain wuas measured using LVDT clumps and thus only over the
center portion of the sample, ani that in which the permanent strain was
measured using cutside devices andi <hus measured the strain over the entire
sample. The difference in the “wo groups of data is almest an order of
ragnitude.

Additional duts are avallable by incluling tests on granuwlar materials,

Such data have teoen rresented by Chicolm, Barksdzle, and Halcheff and Hicks.
The plot of *hese data is shown in Figure 6. These data indicate a steeper

relationship between resilient sircin and permanent strain than was indicated

for subgrade soilsz, Considering the great difference between the materisal
properties, the relaticnships for the granular material are surprisingly close

to those Tor subgrale soils. It is quite poscsitlae that the limiting strain

concept could be extended to apply to granuliar subbase and base materials.

USE OF LABORATORY DATA

It has been shown that the repeated lcad triaxial test is a method for
developing the relationship between resilient strain and permanent strain.
There is still come question as to the best procedure for measuring the
permanent strain and that the results obtained will depend on the particular
procedure used,

In addition tc establishing or verifying limiting strain criteria the
data presented in this manner can also be used to estimate the permanent

deformation of the subgrade. In a report on the structural analysis
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(Reference 18) of insulated layers the anthor used the WED test data to show
that the rutting of the subgrade was an incignificant part of the total rutting
oft the pavemen.. In the analysis the distribution of the computed vertical
resilient strain within the subgrade is shown in Figure 7. Using this distribu-

tion of resilient strain and the relationship between resilient strain and

permanent strain, as estublished by Chisclim, then the distribution of permanent

e
struin as shown in Figure T was determinel (that is, gp = ¢, (TE ),
R le
R

where
€ = the computed permanent strain
p /
€p = the computed resilient strain
€’ = measuwred permanent strain in repeated load triaxial test
eé = measured resilient strain in repeated lozl triaxial test

The total permanent deformation (Ap) was then determined by assuming the

rermanent strain went to zero at a depth of 120 in. below the top of the sub-

0 -
€
grade and computing the area under the curve; i.e., a = j £R (~g) . Using
120 R

this procedure, the deformation at the top of the subgrade was estimated to be
0.08 in.

A conservative estimate of the permanent deformation at the top of the
subgrade can be estimated quickly =and easily by using the ratio of permanent
strain to resilient strain as determined from the computed recilient strain
at the top of the subgrade. The ratic is then used as a constant multiplier
to the computed subgrade resilient deformation (AR) to estimate the subgrade

permanent deformation. This assumes that the ratic of permanent strain to

resilient strain remains constant with depth which, of course, is not true.

e
. s . Do, R R
This is to say if - 1isa constant, then the previous equation becomes

R
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Figure B7.
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Computed distribution of resilient and permanent
strain in the subgrade of a flexible pavement
test section
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e e’

A ==, f- ep = —% ﬁR . For the exunple given above the strain ratio is about
3 ©
I [ee]

1.6 and the computed resilicnt deformatlon at the top of the subgrade was 0.115,
giving an estimated permanent deformation of 0.184. This estimate is over twice
the previous estimate. The difference being, as mentioned before, that the
maximum strain was assumed constant with depth and also that previously it was
assumed that the permanent deformation was zero at 120 in., whereas in the
latter estimate it was assumed the permanent strain extends to an infinite
depth.

The same procedure can be used to compute the permanent deformation in
other layers of the pavement systems., Consider the three pavement types as
shown in Figure & in which sections 1 and 2 ﬁere subjected to simulated traf-
fic of a C-5A aircraft and secticn 3 to the simulated traffic of a TLT aircraft.
To compute resilient strains the material properties as shown in Figure 8 were
assumed (from procedure given in Reference 2) and a modified version of the
Chevron computer program was employed as a mathematical model for computing
resilient strains. From the previously discussed laboratory data the relation-
ship of permanent to resilient strain for levels ;f 100, 1000, and 10,000 strain
repetitions as shown in Figure 9 was assumed. These relationships must be
considered as a pure guess at the true rela-ionships between the computed
resilient strains and the resulting permanent strains in the pavement system.
The computations for determining the permanent strains are shown in Tables 2,

3, and 4, and resulting distributions of permanent strain with depth for
repetition levels of 100, 1000, and 10,000 coverages are shown in Figures 10,
11, and 12 for pavement sections 1, 2, and 3, respectively. It is to be
noted that it has been assumed tha! no permanent strain occurred in the

asphalt conerete and tha' one couverage produces one strain repetition. It
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Figure B9. Assumed relationship between permanent
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TABLE B2

Comnutations of Permanenh’ Strain for Paverent 1

€

A -~
g . - L €,
vaterial Taver Depth R R @ 100
Jr. St 2 i L 219 [O1RRTRY L0115
Cr. 5% 2 ~Q 212 L0020 L 0082
Aand G 3 o 2170 L0010 L06R
Sand T 3 10 .208 L0013 L0328

Gend Or 1 =21 100 L0006 LOLh
sand Gr. 5 21 L1938 L0030 L0118
und Gr. 7 i 108 L0009 L0Lh
“and Gr. 5 -7 .1az L0009 .01k
Sand 3. ¢ o7 L1020 RN .030
Sand Or & Kl .18% L0011 024
Sand Gy & -33 L1806 Relatit e

33 LR LN LONTH
181 L3018 LO0T7h

P
)
5
R
o8]
53

Clay 48 166 L0 L0060

Clay 7 60 L1R3 LO0LO LO0RD

Clay T 100 L2108 L0006 .003%
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TABLE B3 v

Comuntation of Permanent Strain for Pavement 2

£ E [
Material Layer Cepth Sp R 8 ﬁoo @ 1%00 8 10%000
Cr. St. 2 3 228 Nolshid .0082 012 .015%
Cr, St 2 6.5 225 0010 . 0068 .0097 L0126
Cr. St. 2 -10 .ee2 .0009 .005¢ .0078 .0100
Cr, St 3 10 222 .0012 .0098 .01k .019
Cr. St 3 13.5 .218 . 0009 . 0056 .0078 .0100
Cr. St 3 -17 215 .0009 L0056 .0078 L0100
Cr. St. L 17 215 .0013 L0115 .0165 .022
Cr. St L 20.5 211 L0011 oo&ze .012 .0155
Cr. St. L -2h . 207 .0011 .0082 .012 L0155
Clay 5 2k .207 ,0020 009k .0113 L0148
Clay 5 30 .196 .GO17 L0082 L0096 .0123
Clay 5 36 L1368 L0015 L0074 .008¢ L0109
Clay 5 L8 .170 ,0012 0060 L0071 .0088
Clay 5 60 .158 L0010 .0052 .0061 .00Th
Clay 5 120 .108 .000G .003L .00kl .00k8




TABLE B4

Computation of Permanent Strain for Pavement 3
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Figure B10. Computed permanent strain for pavement section 1
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Figure Bll. Computed permanent strains for pavement section 2
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Figure Bl2. Computed permanent strains for pavement section 3
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has also been ussumed that the stabilized gravel hal the same relationship
between permanen. and resilient strain as the crushed limestone.

To compute the total permanent detormation the function representing
the distribution of the permanent strain was numerically integrated by com-
puting the arca under the distribution curves. For this computation, the
permanent strain was assumed to be zero at a depth of 240 in. The total
permanent deformations for the pavement sections at the different coverage
levels is given in Table 5. The comparison of the computed permanent deforma-
tion with the measured permanent deformation is shown in Figure 13. For each
of the test sections the permanent deformation was overestimatedi at 100 ccv=~
erages and underestimated at failure.

There are deficiencies in the procedure, notably the assumed relationshigps
between resilient strain and permanent strain, the inability of layered elastic
theory to predict strains and the use of a coverage as a strain repetition,
which atfected the predicted results. Of these deficiencies prcbably the most
serious and the most difficult to correct is the inability of the analytical
model to predict the resilient strains, The accuracy of the prediction is
greatly affected by the accuracy of the computed resilient strain which
emphasizes the need for more accurate models for predicting responses of

pavement systems.
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TABLE BS5

Computed Surface Deformation

Pavement @ 100 @ 1000 @ 10,000

Section Coverages Coverages Coverages
1.452 1.785 2.34k
0.866 1.059 1.285
6.772 0.933 1.143

B26




SURFACE DEFORMATION, IN

3.0

L TrTTn]

| | T T

T T

2.5 —
&
PAVEMENT 1
2.0 — ]
1.51H— -—
PAVEMENT 2 —
r.o— —
PAVEMENT 3
0.5 —
LEGEND
— MEASURED
~— —— COMPUTED
ol t 11t N S A | [ 1 (111
40 100 1,000 10,000
COVERAGES
Figure B13. Comparison of computed permanent deformation
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